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Structure and evolution of singular vectors in the Eady model
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SUMMARY

The singular vectors of the propagation matrix of a simple two-dimensional model of the midlatitude
atmospheric �ow are calculated, in order to obtain initial conditions that achieve the maximum stream-
function ampli�cation over a 24 h time period. Simple plane wave initial conditions are found to be
a reasonable model for the ampli�cation mechanism of the leading singular vector structures. The
primary mechanism for growth is found to be the ‘untilting’ of the initial potential vorticity wavefronts.
The existence of boundary wave structures is found to be the deciding factor in the zonal scale of
perturbations and some evidence that these act against the primary growth mechanism is presented.
Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In recent years the singular value decomposition of the propagation matrix of the linearized
dynamics of �uid �ow has found several uses within meteorological circles, e.g. the creation of
perturbations for ensemble forecasting [1] or the identi�cation of target regions for adaptive
observation strategies [2]. The motivation for the use of this matrix decomposition lies in
the fact that right singular vectors form a complete orthogonal set of ‘initial’ phase space
directions, with the �rst singular vector giving the direction of maximal growth over a �nite
time interval.
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Due to the fact that the singular vectors are orthogonal, linear combinations of these vectors
cannot amplify by a factor greater than the largest singular value associated with the vectors
in that combination. Unlike eigenvectors, singular vectors are orthogonal even for the non-
symmetric operators associated with most �uid �ows. The structure of the singular vectors is
dependent on both the time interval and the norm used in their computation.
The dynamical properties of these optimal growth structures are investigated in this paper in

the context of a simple two-dimensional model of the midlatitude atmospheric �ow. Sections
2 and 3 give brief descriptions of the model formulation and the singular vector computation,
respectively. Results and conclusions are contained in Sections 4 and 5.

2. 2D ‘EADY’ MIDLATITUDE FLOW MODEL

The ‘Eady’ model is a simpli�ed quasi-geostrophic representation of the mean atmospheric
(incompressible) �ow in the northern midlatitude region [3]. In this model the mean tempera-
ture �eld is characterized by a constant negative gradient in the meridional (y) direction and
the mean vorticity (Coriolis parameter), f0, is assumed constant. Through a ‘thermal wind
balance’ relationship, a mean wind velocity �eld in the zonal (x) direction, characterized by a
uniform shear with height (z), is induced by the meridional temperature gradient. Additional
simpli�cations can be made by de�ning the meridional derivative of all perturbations to the
background state to be zero, de�ning the vertical velocity to be zero on the upper and lower
boundaries and imposing periodic boundary conditions in the zonal direction. This leads to
the linear perturbation evolution equations
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for x∈ [0; X ], where �u(z)= z is the mean zonal wind, q(x; z; t) is a quasi-geostrophic poten-
tial vorticity perturbation, and  (x; z; t) is a stream-function perturbation. The partial stream-
function derivative with respect to x is the meridional velocity perturbation, v(x; z; t)=  x(x; z; t),
and that with respect to z is the buoyancy (thermal) perturbation, b(x; z; t)=  z(x; z; t). The
zonal co-ordinate is non-dimensionalized by a factor NH=f0, the vertical co-ordinate by H
and time by N=f0�, where N =10−2s−1 is a vertical stability parameter, H =104 m is the
height of the domain, f0 = 10−4 s−1 is the mean vorticity and �=4× 10−3s−1 is the vertical
shear of the mean wind �eld. The vertical co-ordinate is shifted so that zero is in the centre
of the domain. The inversion of Equation (2) subject to periodic and derivative boundary
conditions is made unique by enforcing the condition that the stream-function �eld has a zero
mean value. For the numerical results presented in this paper a discrete grid-point model,
with 50 grid-points horizontally and 41 grid-points vertically on a domain of non-dimensional
horizontal extent X =6 corresponding to a dimensionalized distance of 6000 km was used.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:1003–1009



STRUCTURE AND EVOLUTION OF SINGULAR VECTORS IN THE EADY MODEL 1005

3. SINGULAR VECTOR COMPUTATION

The state at time t of a discretization of the model is de�ned by a vector,  (t)∈Rn, of
grid-point stream-function values. An initial state at time t=0 is propagated forward in time
to the state at time t= �, by multiplication by the matrix L0;� ∈Rn×n. By performing a singular
value decomposition [4] on this matrix

L0;�=U�V T (4)

a complete set of orthonormal vectors, Ci, (‘right singular vectors’; columns of V ∈Rn×n)
representing components of the state at t=0, are obtained. These evolve to a corresponding
set of orthonormal vectors, ui, (‘left singular vectors’; columns of U ∈Rn×n) with 2-norm
ampli�cation of each vector given by the singular values, �i (the diagonal entries of �∈Rn×n).
Since the right singular vectors form a complete basis for Rn, all initial states may be

expressed as a linear combination of these vectors. Hence the initial and corresponding �nal
state may be written as

 (0)=
n∑

i= 1
ciCi and  (�)=

n∑
i=1

ci�iui (5)

respectively, where ci= CTi  (0). Due to the orthogonality of the singular vectors the ampli�-
cation of this mapping, as measured in the vector 2-norm, may be expressed as

‖ (�)‖2
‖ (0)‖2 =

(
n∑

i=1
c2i �

2
i

/
n∑

i=1
c2i

)1=2
(6)

By convention the singular values are indexed such that �i¿�i+1. Therefore, simple arguments
can be used to show that the �rst right singular vector, C1, is the initial state that achieves
the maximum ampli�cation over the time interval [0; �].

4. RESULTS AND ANALYSIS

A complete set of singular vectors were calculated for a time interval of twenty-four hours.
The potential vorticity (pv) and stream-function evolution associated with the �rst singular
vector are shown in Figures 1(a) and (b), respectively. This evolution may be summarized
as follows: the initial stream-function �eld is associated with the interior potential vorticity
structure and not with thermal waves on the upper and lower boundaries; this pv structure,
initially tilted against the mean wind shear, is rotated to a vertical position over the twenty-four
hour period, via the conservation law (1); this is associated with a rotation and ampli�cation
of the initial stream-function �eld; by twenty-four hours, stream-function structures on the
upper and lower boundaries associated with thermal waves are clearly visible.
An understanding of the growth mechanism of the leading singular vectors can be gained

by comparison with the evolution of similar plane wave pv structures, which have a known
continuous functional form. The stream-function �eld associated with such structures [5] is
given by

 (x; z; t)=
{

(1 + a20)
[1 + (a0 − t)2]

eik(a0−t)z + A(t) cosh(kz) + B(t) sinh(kz)
}
eikx (7)
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Figure 1. The potential vorticity (a) and stream-function (b) evolution of the 1st singular vector.
Solid contours denote positive values, dotted contours denote negative.

where k is the zonal wavenumber, m0 is the initial vertical wavenumber and a0 =m0=k is
the ratio of the two. The �rst term in the bracket in Equation (7) gives the structure of
the stream-function associated with the interior pv. The other two terms give the stream-
function structure due solely to pv independent thermal perturbations on the upper and lower
boundary.
For reference Figure 2(b) shows an initial stream-function structure of the form of

Equation (7), with the values a0 = 3:25, k=2�, A(0)=B(0)=0 chosen speci�cally to match
as closely as possible the �rst singular vector structure. The evolved stream-function �eld at
t=24h is also shown. As with the singular vector, the stream-function wave fronts are rotated
to a nearly vertical position by t=24 h. The thermal structures on the boundary at t=24 h
are also present and are more pronounced than in the singular vector.
The evolution of the stream-function associated with the pv for this structure is readily

interpretable by examination of Equation (2). The initially tilted plane waves are associated
with high  zz. As the plane waves are untilted and reach vertical position,  zz → 0. Therefore,
because pv is conserved,  xx must increase, which implies that, since the horizontal structure
is sinusoidal, the amplitude of  itself must be increasing to compensate for the reduction in
vertical gradients.
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Figure 2. (a) Plane-wave and �rst singular vector stream-function ampli�cation; and (b) plane-wave
stream-function structure at t=0, t=24 h.

A result of this stream-function ampli�cation is an increase in the forcing at the boundaries
due to the meridional velocity, implying that although initially zero, A(t) and B(t) do not
remain so [5]. This means that as the vertical stream-function gradient associated with the
pv tends to zero, the boundary waves associated with the second two terms of Equation (7)
become increasingly prominent within the overall stream-function structure. As the pv crosses
the vertical position and begins to tilt ‘with’ the wind shear beyond 24 h (not shown), the
transfer from  zz to  xx happens in reverse, leading to reduction in amplitude of the stream-
function associated with the pv, so that only the (in this case) neutral boundary waves remain.
Figure 2(a) shows the evolution of stream-function 2-norm amplitude against time for both

the �rst singular vector and the plane wave structure. There is little distinction between the
two curves until ∼20 h, implying that it is not until the wavefronts have reached almost
vertical orientation, that the di�erence in structure between the two initial conditions becomes
signi�cant. The explanation for this eventual discrepancy between the evolution of the two
structures must lie in the fact that the singular vector has a reduced stream-function amplitude
towards the upper and lower boundaries, compared to the plane-wave, since this is the only
signi�cant di�erence. This reduces the amplitude of the  x forcing to Equation (3) leading
to a reduction in the ampli�cation of the thermal waves on the boundaries. The likely e�ect
of this is to delay the inevitable domination of the overall structure by the neutral boundary
waves leading to a slight increase in the �nal stream-function amplitude. Figure 2(a) seems
to con�rm this, in that the singular vector stabilizes several hours after the plane wave, and
at a higher amplitude.
Figure 3(b) shows the leading eight singular values (stream-function ampli�cation) ordered

by the number of zonal wavelengths, �, in the corresponding singular vector; here k=2��=6.
There is a noticeable variation in the ampli�cation achieved by perturbations of di�erent
zonal scales. Comparison with the plane-wave initial conditions can give some indication as
to the cause of this scale dependence. Figure 3(a) shows the 24 h ampli�cation of initial
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Figure 3. (a) Plane-wave stream-function ampli�cation against a0 and �=6k=2�; and (b) leading
singular vector stream-function ampli�cation against �=6k=2�.

perturbations of the form of Equation (7), with A(0)=B(0)=0, as a function of both � and
initial tilt a0. There is a strong similarity in the ampli�cation scale dependence of the singular
vectors and that of plane-waves with initial tilts a0 ∼ 3:25, suggesting that the former may be
well modelled by the latter. Inspection of Equation (7) indicates that this scale dependence
is attributable to the growth of boundary waves, since, unlike the pv associated with the
stream-function, the amplitude of the boundary waves varies with wavenumber, k.
The evolution of waves on the upper and lower boundaries, within this model has a marked

scale dependence. Long waves (in this particular model setup �=1; 2) exhibit exponential
growth/decay, whereas short waves (�¿2) are neutrally stable and amplify only as a result of
the meridional velocity associated with the interior pv. It is noticeable that the leading singular
vectors do not have zonal scale large enough to excite exponentially growing boundary waves.
This, and the signi�cant reduction in plane-wave ampli�cation associated with �=1; 2, suggest
that the development of boundary waves acts to reduce the e�ect of the primary ‘pv untilting’
growth mechanism.

5. CONCLUSIONS

The 24 h optimal growth perturbations for the ‘Eady’ midlatitude �ow model, de�ned by the
singular vectors of the propagation matrix, are well modelled by simple plane-wave initial
conditions. There is a direct correspondence between initial tilt and zonal scale of the �rst
singular vector and that of the 24 h optimal growth plane-wave initial condition. The growth
achievable by initially tilted plane-wave like structures of di�ering zonal scales, seems to be
determined by the thermal waves that develop on the boundary. These thermal waves appear
to act against the primary untilting growth mechanism, which is a likely explanation for the
reduction in the stream-function amplitude (and hence thermal wave growth) towards the
upper and lower boundaries.
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